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Introduction

Conventional thermodynamics

The system Is macroscopic. (e.g., the gas in the box)

Dynamics are deterministic.

The interaction between two systems is negligible. (Additivity)
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The system is mesoscopic. (e.g., the Brownian particle) . 1

Dynamics are stochastic. (Thermodynamic quantity is random variable.)

The interaction between two systems is NOT negligible. (Non-additivity)
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The system is mesoscopic. (e.g., the Brownian particle)

Dynamics are stochastic. (Thermodynamic quantity is random variable.)

The interaction between two systems is NOT negligible. (Non-additivity)

Information transmission between two systems plays a crucial role!
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Information thermodynamics

Review
Parrondo, J. M., Horowitz, J. M., & Sagawa, T. (2015). Thermodynamics of information. Nature physics, 11(2), 131.
My Ph, D. thesis
Ito, S. (2016). Information thermodynamics on causal networks and its application to biochemical signal transduction. Springer.
We consider the problem of Maxwell's demon il
In terms of stochastic thermodynamics. e = o " Dimeric particl
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We can reconsider the theory of

\

(stochastic) thermodynamics Dl

30um

from the information-theoretic view point.

For example, the second law of thermodynamics
can be generalized for information processing.
(The 2nd law of “information” thermodynamics)
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Experimental demonstration of Maxwell’s demon

Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., & Sano, M. (2010). Nature physics, 6(12), 988.
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Our contributions in the field of information thermodynamics

We derived the second law of information (i CDIS
thermodynamics for complex interacting systems. (e.g.,

: : : e i GO
2D Langevin egs., Master equation, Bayesian networks) $ ~t
lto, S., & Sagawa, T. (2013). Physical review letters, 111(18), 180603. ? ".'k‘\;;»
Shiraishi, N., Ito, S., Kawaguchi, K., & Sagawa, T. (2015). New Journal of Physics, 17(4), 045012. (1) :i;‘)// )

Ito, S. (2016). Scientific reports, 6.

We applied information thermodynamics to o
biochemical information processing o ©

(e.g., sensory adaptationin E.col).

Ito, S., & Sagawa, T. (2015). Nature communications, 6. (i” . ®

We obtained the Onsager reciprocal relationship i’”‘r(i (XS
between information flow and thermodynamic flow.

J T O {_T‘f/\v/\‘ T
Yamamoto, S., Ito, S., Shiraishi, N., & Sagawa, T. (2016). Physical Review E, 94(5), 052121. A9

We revealed stochastic thermodynamic interpretation
of information geometry.

Ito, S. (2017). arXiv preprint arXiv:1712.04311.



Introduction

Today’s goal

We introduce basics of stochastic thermodynamics for the Langevin
equation.

-1st law of thermodynamics, 2nd law of thermodynamics
We introduce informational quantities.

- mutual information, relative entropy

We derive the second law of information thermodynamics for Langevin
equation.

We discuss stochastic thermodynamics in 2D Langevin equations, and
clarify the idea of information thermodynamics.
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Thermodynamics (Review)

1st law of thermodynamics

dQ) = dU — dW dW = 0\U - dA

The heat dO from the thermal bath to the system is given by the

difference between the potential energy change of the system 4dU and
the work dWw done by the control parameter A.

2nd law of thermodynamics

dQ
> =
dS_T

The entropy change of the system dS is bounded by the heat dQ per

the temperature of the thermal bath T.




Thermodynamics (Review)

2nd law of thermodynamics (Non-negativity)

dQ
>
dS_T

It dynamics of the system are reversible, the equality holds.
The thermal bath is in equilibrium, the dynamics of heat bath is
reversible. We then define the entropy change of the thermal bath as

dQ

dSbath — T

The 2nd law of thermodynamics is given by

dS + dSy.n > 0

(Non-negativity of the total entropy change)
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Stochastic thermodynamics

Langevin equation

mxi(t) = —yx@(t) — O Ux(z(t), Ax () + V272 Txéx (1)

Stochastic differential equation.

White Gaussian noise: & (Mean O, variance 1)
Position x(¢) at time ¢, Mass: myx, Friction coefficient: yx. Potential energy: Uy,
Control parameter: Ax, Temperature of thermal bath: Tx

Overdamped limit

If relaxation time mx/yx is small enough (compared to the time scale
which we consider), we can assume the following overdamped limit.

(We here assume yx=1.)

(t) = =0, Ux(x( ) + /2T xvEx(t




Stochastic thermodynamics

1st law of thermodynamics (stochastic thermodynamics)

We consider the following chain rule for the potential energy change dUx

AU (2(t), A (1)) = () 0 B Us (2(t), Ax (£))dt + Ax () 0 Ox, U (2(t), Ay (£))dt

where dt is infinitesimal time, - is defined as the Stratonovich integral
that holds the ordinary calculus (e.g., the chain rule).

Here, we define the work dWwx done by the control parameter, and
the heat dOx from the thermal bath as follows.

dW;{(SE(t), Ax(t)) = ).\)((t) O (‘9,\XUX(:13(75), Ax(t))dt
Qv (2(1), A (1)) = () © Dy Uy (2(£), A (£))dlt

We obtain the 1st law of thermodynamics.

dQx = dUy — dWy




Stochastic thermodynamics

Definition of the heat

In stochastic thermodynamics, the heat is defined as
dQx (x(t), Ax (t)) = &(t) 0 U (z(t), Ax (t))dt
By using the Langevin equation

o(t) = =0, Ux (2( )+ V2T xvEx (T

we obtain the following expression of the heat
dQX — x(t) O (\/ QTxfgg(t) —

The heat flux jx=dQxdt is also given by

Jx(t (V2T x&x (1)

This quantity Is stochastic, and can be negative.
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Information theory (Review)

Shannon entropy (differential entropy)

Random variable: X. Stochastic value (event): x.
Probability distribution: px(x)

We define the Shannon entropy (differential entropy) of X as

H(X) =~ [ dapx (@) npx(2) = (- npx (2)

() Is the ensemble average.

the (joint) Shannon entropy is also defined as

H(Xl,...,Xn):—/dajl---dxanl ,,,,, x, (T1,..,zn)Inpx, . x, (X1,...,2p)

= (—Inpx, . x,(T1,...,Zn))



Information theory (Review)

Conditional Shannon entropy

In the condition that the random variable Yis known,

the conditional Shannon entropy of Xis defined as

H(X|Y)=H(X,Y)— H(Y)

Mutual information

To quantify stochastic correlation between two random variables (X, 1)

we define the mutual information as

I[(X;Y)=H(X)- H(X]|Y)

In the condition that the random variable Zis known,
conditional mutual information between X and Yis defined as

I[(X;Y|Z)= H(X|Z) — H(X|Y, Z)



Information theory (Review)

Mathematical properties of mutual information

» Symmetricity [(X;Y) = I(Y; X)

- Non-negativity 1(X;Y) >0

I(X:Y)=0 iff pxy(@y) =px@py(y) foranyxy
If Xand Y are stochastically independent, it gives 0. (Correlation)

Venn diaglam



Information theory (Review)

Relative entropy (Kullback-Leibler divergence)

As a generalization of mutual information,
We define relative entropy between two distributions px(x), gx(x) as

px ()
gx ()

D(px||gx) :/dwpx(f) In

Mutual information is given by the following relative entropy

[(X;Y) = D(pX,YHPX}?Y)



Information theory (Review)

Non-negativity of the relative entropy

Non-negativity

Proof. (abstract)

We use Jensen’s inequality.
Convex function: £, Function of x: G(x), Probability distribution px(x)

[FG@mwx@ir < F( [Gapxaiz)  or  (F(G@) < FUG@)

It we consider F=In and G(x)= gx(x)/px(x), we obtain

—D(pxllax) = (Infgx (z)/px (z)]) < In[{¢x (z)/px(2))] =In1=0
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2nd law of thermodynamics In
stochastic thermodynamics

Transition probability for Langevin equation (Onsager-Machlup)

2(t) = —0.Ux (2(t), A\x (1)) + /2T xEx (2) Ex(t)dt = dBux,

xry = x(t)

We consider the following discretization. Ay = Ax (1)

Li4dt — Lt — _axUX(fCta )\Xt)dt + 2T xdByy

Probability of dBx: is given by Gaussian. Jacobian.

1 [ (dBx, )2} O]dBax] 1
exp | — =
Vv 2mdt 2dt

0Tt 4t 2Ty
The transition probability from x;to x4 1S given by

p(dBx,) =

1 D [_ (mt—i—dt — Tt + 83;[])( (3’)15, )\Xt)dt)Q

T(xt—I—dtQ xt) — pXt+dt|Xt — 47TTxdt exX 4Txdt




2nd law of thermodynamics In
stochastic thermodynamics

Detailed fluctuation theorem

We consider the backward probability from x4 10 x:

PBX| X ae ($t’$t+dt) — T(iﬁt; xt—l—dt)

The ratio between two probabilities gives the heat.

PXiqar]| Xt (xt+dt|xt) o

PBX,| Xy qs (Tt|Ttyat)

T . _ _ (‘/’Bt—i—dt — Tt + aCUUX (ajt? AXt)dt)2
(xt‘th)xt) - pXt+dt|Xt - \/m eXp | — 4Tth

Ja(t) = &(t) o (V2T xEx (1) — &(t))




2nd law of thermodynamics In
stochastic thermodynamics

2nd law of thermodynamics
We consider the following relative entropy.
D(px,, 01 x.Px ) 1PBx, 1 X, 0 PXtrar) = O
We here use the detailed fluctuation theorem.

(Ja(t))dt
D(pXt—l—dt|tiXtHpBXt|Xt_|_dtht—|—dt) — TX T H(Xt-l—dt) o H(Xt)

The entropy change of X: dSx(t) = H(Xirqr) — H(Xy)

The entropy change of the thermal bath: dSpam(t) = —

We then obtain the 2nd law of thermodynamics

dSx(t) + dSpatn(t) > 0
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Information thermodynamics

Langevin equation with memory

The control parameter ix depends on the memory state m.

o(t) = =0, Ux((t), \x(m,t)) + /2T xEx ()

Transition probability

The transition probability also depends on the memory state m.

T (@3 Tigar) = pXt+dt|Xt,M(37t+dt T, M)




Information thermodynamics

Detailed fluctuation theorem with memory

For fixed memory state m, we define the backward probability as

pBXt|Xt+dt,M(mt‘$t—|—dta m) = T (T¢; Titde)

We obtain the detailed fluctuation theorem

pXt—I—dt |Xt,M (xt+dt ‘:Bt7 m)

pBthxt_'_dt,M(xt |:Et_|_dt7 m)

= exp

Ja(t) = &(t) o (V2TxEx (t) — &(1))




Information thermodynamics

2nd law of information thermodynamics

We consider the following relative entropy.

D(pXt—l—dt|XtaMpXtaM"pBXt|Xt_|_dt,MpXt—|—dtaM) Z 0

We here use the detailed fluctuation theorem.
(

D(pXt+dt|Xt,MpXt7M"pBXt|Xt_|_dt,MpXt+dt7M) —

The entropy change of X:

We obtain the 2nd law of information thermodynamics.

dSx(t) + dSpatn(t) > I(X¢rar; M) — I(Xy; M)

Due to the memory state, we need the term of mutual information.
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Stochastic thermodynamics for 2D
Langevin equations

2D Langevin equations

We consider the following 2D Langevin equations.

o(t) = -0, Ux(x )+ V2T xEx (1)

y(t) = —0,Uy(x ) 4+ /2Ty &y (8)

White Gaussian noise (mean O, variance 1, independent): &, &.

Detailed fluctuation theorem

For the following two transition probabilities

_ Ty .
PX, . ae| X:,Y: (Tt |me, yi) = Ei((xt+dt; Ty) PY, i | X, Ys (Yetdt|Te, ye) = 7;75 (Yetdt; Ye)

7;3;(yt—|—dt§ Yt)

we have ¥ (245 - ° T (Yts Yegar) -

where jx(t)




Stochastic thermodynamics for 2D
Langevin equations

2nd law of thermodynamics

We consider the following relative entropy.

D(pXt+dt|Xt7Ytth+dt|Xt,3@pXt,Yt"pBXtIXt+dt,Yt+dthYtIXt+dt,Yt+dtht+dt7Yt+dt) > 0

We here use the detailed fluctuation theorem.

D(pXt—l—dt | X4, Y PYiyae| X, i PX L, Yr ‘ ‘pBXt |Xt—|—dt7Yt—|—dthYt |Xt+dt,Yt+dtht+dt>Yt+dt)

_ <j’fg3>dt _ <j3’1(fj>dt ©H(Xeran Yerar) — H(X,, V)

The entropy change of Xand Y: dSxy = H(Xirat, Yerar) — H(X¢, Y2)
(Ja(t))dt

The entropy change of the thermal bath:

dShath,x = —

We then obtain the 2nd law of thermodynamics

dSx y + dSpath. x + dSbath,y > 0




Stochastic thermodynamics for 2D
Langevin equations

2nd law of information thermodynamics

We consider the following relative entropy.

D(pXt+dt|Xt7Ytht7Yt7Yt—|—dt||pBXt|Xt_|_dt,Yt_|_dtth7Xt—|—dt7Y) > O

We here use the detailed fluctuation theorem.

D(pXt—{—dt 1 X, Yy PX ¢, Y:, Y4 ae ‘ ‘pBXt (X ar,Yerar PYe, Xt qae ,Yt+dt)

_ <jX1(J;)>dt + H(Xiaar) — H(Xe) + I( X {Ye, Yeoar ) — I( Xewae; {Ye, Yivar })

The entropy change of X: dSx(t) = H(Xirqr) — H(Xy)

Ja(t))dt
Ty

The entropy change of the thermal bath by X: dSpath,x = —

We then obtain the 2nd law of information thermodynamics

dSx + dSbath,X > I(Xt+dt; {Y;fa Y;H—dt}) — I(Xt; {Y;ta Y;H—dt}) = dl




Stochastic thermodynamics for 2D
Langevin equations

Comparison

The 2nd law of thermo.

-

.

dSx.y + dSpath,x + dSbath,y > 0

~

J

The 2nd law of info. thermo.

-

dS~y + dSbath,X > dl

~

X | dSxy | v

\_ , . ,

—(ja)dt —(Jy)dt
dSbath,x TX dShath,y Ty

—(Jx)dt —{Jy)dt
dSpatn, ¥ L'y | dSiatny 1y




Summary

For Langevin equation, the 1st law is given by the chain rule, and the 2nd
law Is given by non-negativity of the relative entropy.

If there is a memory state, the 2nd law is modified because we have to
consider the relative entropy with a memory state.
The modified term is given by mutual information difference.

If we consider 2D Langevin equations, we have two choices of the relative
entropy. One gives the 2nd law of thermodynamics, and another gives the
2nd law of information thermodynamics.

The 2nd law of information thermodynamics can be considered as the 2nd
law for a subsystem.
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