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Conventional thermodynamics

Introduction

Stochastic thermodynamics

The system is macroscopic. (e.g., the gas in the box)

The system is mesoscopic. (e.g., the Brownian particle)

Dynamics are deterministic.

Dynamics are stochastic. (Thermodynamic quantity is random variable.)

The interaction between two systems is negligible. (Additivity)

The interaction between two systems is NOT negligible. (Non-additivity)

Seifert, U. (2012). Reports on Progress in Physics, 75(12), 126001.

Textbook, Review 
Sekimoto, K. (2010). Stochastic energetics (Vol. 799). Springer.
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Information transmission between two systems plays a crucial role!



Information thermodynamics

Introduction

We consider the problem of Maxwell’s demon 
In terms of stochastic thermodynamics.

Review 
Parrondo, J. M., Horowitz, J. M., & Sagawa, T. (2015). Thermodynamics of information. Nature physics, 11(2), 131.

Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., & Sano, M. (2010). Nature physics, 6(12), 988.

For example, the second law of thermodynamics 
can be generalized for information processing. 
(The 2nd law of “information” thermodynamics)

We can reconsider the theory of  
(stochastic) thermodynamics  
from the information-theoretic view point.

Experimental demonstration of Maxwell’s demon

My Ph, D. thesis 
Ito, S. (2016). Information thermodynamics on causal networks and its application to biochemical signal transduction. Springer.



Our contributions in the field of information thermodynamics

Introduction

We derived the second law of information 
thermodynamics for complex interacting systems. (e.g., 
2D Langevin eqs., Master equation, Bayesian networks)

We obtained the Onsager reciprocal relationship 
between information flow and thermodynamic flow.

Ito, S., & Sagawa, T. (2013). Physical review letters, 111(18), 180603.
Shiraishi, N., Ito, S., Kawaguchi, K., & Sagawa, T. (2015). New Journal of Physics, 17(4), 045012.

Yamamoto, S., Ito, S., Shiraishi, N., & Sagawa, T. (2016). Physical Review E, 94(5), 052121.

We applied information thermodynamics to 
biochemical information processing  
(e.g., sensory adaptation in E. coli).

Ito, S., & Sagawa, T. (2015). Nature communications, 6.

Ito, S. (2016). Scientific reports, 6.

We revealed stochastic thermodynamic interpretation 
of information geometry.

Ito, S. (2017). arXiv preprint arXiv:1712.04311.



Today’s goal

Introduction

We introduce basics of stochastic thermodynamics for the Langevin 
equation.

We derive the second law of information thermodynamics for Langevin 
equation.

-1st law of thermodynamics, 2nd law of thermodynamics

We introduce informational quantities.

- mutual information, relative entropy

We discuss stochastic thermodynamics in 2D Langevin equations, and 
clarify the idea of information thermodynamics.
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Thermodynamics (Review)
1st law of thermodynamics 

dQ = dU � dW

The heat dQ from the thermal bath to the system is given by the  
difference between the potential energy change of the system dU and 
the work dW done by the control parameter λ.

dW = @�U · d�

2nd law of thermodynamics

The entropy change of the system dS  is bounded by the heat dQ  per  
the temperature of the thermal bath T.

dS � dQ

T



If dynamics of the system are reversible, the equality holds. 
The thermal bath is in equilibrium, the dynamics of heat bath is 
reversible. We then define the entropy change of the thermal bath as

dS � dQ

T

dSbath = �dQ

T
The 2nd law of thermodynamics is given by 

dS + dSbath � 0

(Non-negativity of the total entropy change)

Thermodynamics (Review)
2nd law of thermodynamics (Non-negativity)
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Overdamped limit

Stochastic thermodynamics
Langevin equation

mX ẍ(t) = ��X ẋ(t)� @

x

UX (x(t),�X (t)) +
p

2�XTX ⇠X (t)

Stochastic differential equation.  
White Gaussian noise: ξX (Mean 0, variance 1) 
Position x(t) at time t, Mass: mX, Friction coefficient: γX. Potential energy: UX,  
Control parameter: λX, Temperature of thermal bath: TX

ẋ(t) = �@

x

UX (x(t),�X (t)) +
p

2TX ⇠X (t)

If relaxation time mX/γX  is small enough (compared to the time scale  
which we consider), we can assume the following overdamped limit.   
(We here assume γX=1.)



1st law of thermodynamics (stochastic thermodynamics)

We consider the following chain rule for the potential energy change dUX.

where dt is infinitesimal time, ◦ is defined as the Stratonovich integral  
that holds the ordinary calculus (e.g., the chain rule). 

Here, we define the work dWX  done by the control parameter, and  
the heat dQX  from the thermal bath as follows. 

dUX (x(t),�X (t)) = ẋ(t) � @
x

UX (x(t),�X (t))dt+ �̇X (t) � @
�XUX (x(t),�X (t))dt

dWX (x(t),�X (t)) = �̇X (t) � @�XUX (x(t),�X (t))dt

dQX (x(t),�X (t)) = ẋ(t) � @
x

UX (x(t),�X (t))dt

We obtain the 1st law of thermodynamics. 
dQX = dUX � dWX

Stochastic thermodynamics



dQX (x(t),�X (t)) = ẋ(t) � @
x

UX (x(t),�X (t))dt

In stochastic thermodynamics, the heat is defined as

By using the Langevin equation 

ẋ(t) = �@

x

UX (x(t),�X (t)) +
p

2TX ⇠X (t)

dQX = ẋ(t) � (
p
2TX ⇠X (t)� ẋ(t))dt

we obtain the following expression of the heat 

The heat flux jX=dQX/dt is also given by  

This quantity is stochastic, and can be negative.

jX (t) = ẋ(t) � (
p

2TX ⇠X (t)� ẋ(t))

Definition of the heat

Stochastic thermodynamics
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Shannon entropy (differential entropy)

Random variable: X. Stochastic value (event): x.  
Probability distribution: pX(x)

Information theory (Review)

We define the Shannon entropy (differential entropy) of X as

H(X) = �
Z

dxpX(x) ln pX(x) = h� ln pX(x)i
〈〉 is the ensemble average.

By using the joint distribution pX1,…,Xn (x1,…, xn),  
the (joint) Shannon entropy is also defined as

H(X1, . . . , Xn) = �
Z

dx1 · · · dxnpX1,...,Xn(x1, . . . , xn) ln pX1,...,Xn(x1, . . . , xn)

= h� ln pX1,...,Xn(x1, . . . , xn)i



Conditional Shannon entropy

In the condition that the random variable Y is known, 
the conditional Shannon entropy of X is defined as

H(X|Y ) = H(X,Y )�H(Y )

Mutual information

To quantify stochastic correlation between two random variables (X, Y) 
we define the mutual information as

In the condition that the random variable Z is known, 
conditional mutual information between X and Y is defined as

I(X;Y |Z) = H(X|Z)�H(X|Y, Z)

I(X;Y ) = H(X)�H(X|Y )

Information theory (Review)



Mathematical properties of mutual information

・Symmetricity I(X;Y ) = I(Y ;X)

・Non-negativity I(X;Y ) � 0

I(X;Y ) = 0 iff pX,Y (x, y) = pX(x)pY (y) for any x, y

If X and Y are stochastically independent, it gives 0. (Correlation)

Venn diaglam

H(X) H(Y )

I(X;Y )

H(X|Y ) H(Y |X)

I(X;Y ) = H(X) +H(Y )�H(X,Y )

= H(X)�H(X|Y )

= H(Y )�H(Y |X)

Information theory (Review)



Relative entropy (Kullback-Leibler divergence)

As a generalization of mutual information,  
We define relative entropy between two distributions pX(x), qX(x) as

D(pX ||qX) =

Z
dxpX(x) ln

pX(x)

qX(x)

I(X;Y ) = D(pX,Y ||pXpY )

Mutual information is given by the following relative entropy

Information theory (Review)



Non-negativity of the relative entropy

D(pX ||qX) � 0

D(pX ||qX) = 0 iff for any xpX(x) = qX(x)

Proof. (abstract)

We use Jensen’s inequality.  
Convex function: F,    Function of x: G(x),   Probability distribution pX(x)

or 

If we consider F=ln and G(x)= qX(x)/pX(x), we obtain

�D(pX ||qX) = hln[qX(x)/pX(x)]i  ln[hqX(x)/pX(x)i] = ln 1 = 0

Z
F (G(x))pX(x)dx  F

✓Z
G(x)pX(x)dx

◆
hF (G(x))i  F (hG(x)i)

Information theory (Review)

Non-negativity
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2nd law of thermodynamics in 
stochastic thermodynamics

Transition probability for Langevin equation (Onsager-Machlup)

ẋ(t) = �@

x

UX (x(t),�X (t)) +
p

2TX ⇠X (t)

We consider the following discretization.

x

t+dt

� x

t

= �@

x

UX (x
t

,�X
t

)dt+
p
2TXdBX

t

⇠X (t)dt = dBX t

xt = x(t)
�X t = �X(t)

Probability of dBXt  is given by Gaussian.

The transition probability from xt to xt+dt  is given by

@[dBX t]

@xt+dt
=

1p
2TX

Jacobian.

p(dBXt) =

1p
2⇡dt

exp


� (dBXt)

2

2dt

�

T (x

t+dt

;x

t

) = p

Xt+dt|Xt
=

1p
4⇡T

X

dt

exp


� (x

t+dt

� x

t

+ @

x

UX (x

t

,�

Xt)dt)
2

4T

X

dt

�



Detailed fluctuation theorem

We consider the backward probability from xt+dt to xt.

The ratio between two probabilities gives the heat.

pXt+dt|Xt
(xt+dt|xt)

pBXt|Xt+dt
(xt|xt+dt)

= exp


�jX (t)

TX
dt

�

(Detailed fluctuation theorem)

pBXt|Xt+dt
(xt|xt+dt) = T (xt;xt+dt)

2nd law of thermodynamics in 
stochastic thermodynamics

T (x

t+dt

;x

t

) = p

Xt+dt|Xt
=

1p
4⇡T

X

dt

exp


� (x

t+dt

� x

t

+ @

x

UX (x

t

,�

Xt)dt)
2

4T

X

dt

�

jX (t) = ẋ(t) � (
p

2TX ⇠X (t)� ẋ(t))



2nd law of thermodynamics

We consider the following relative entropy.

We here use the detailed fluctuation theorem. 

D(pXt+dt|Xt
pXt ||pBXt|Xt+dt

pXt+dt) � 0

D(pXt+dt|Xt
pXt ||pBXt|Xt+dt

pXt+dt) = �hjX (t)idt
TX

+H(Xt+dt)�H(Xt)

The entropy change of X: dSX (t) = H(Xt+dt)�H(Xt)

The entropy change of the thermal bath: dSbath(t) = �hjX (t)i
TX

dt

We then obtain the 2nd law of thermodynamics

dSX (t) + dSbath(t) � 0

2nd law of thermodynamics in 
stochastic thermodynamics
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Langevin equation with memory

Information thermodynamics

The control parameter λX  depends on  the memory state m.

ẋ(t) = �@

x

UX (x(t),�X (m, t)) +
p
2TX ⇠X (t)

Transition probability

The transition probability also depends on the memory state m.

Tm(xt;xt+dt) = pXt+dt|Xt,M (xt+dt|xt,m)



Detailed fluctuation theorem with memory

For fixed memory state m, we define the backward probability as

pBXt|Xt+dt,M (xt|xt+dt,m) = Tm(xt;xt+dt)

We obtain the detailed fluctuation theorem

pXt+dt|Xt,M (xt+dt|xt,m)

pBXt|Xt+dt,M (xt|xt+dt,m)

= exp


�jX (t)

TX
dt

�

Information thermodynamics

jX (t) = ẋ(t) � (
p

2TX ⇠X (t)� ẋ(t))



2nd law of information thermodynamics

We consider the following relative entropy.

We here use the detailed fluctuation theorem. 

dSX (t) = H(Xt+dt)�H(Xt)

dSbath(t) = �hjX (t)i
TX

dt

We obtain the 2nd law of information thermodynamics.

D(pXt+dt|Xt,MpXt,M ||pBXt|Xt+dt,MpXt+dt,M ) � 0

D(pXt+dt|Xt,MpXt,M ||pBXt|Xt+dt,MpXt+dt,M ) = �hjX (t)i
TX

dt+H(Xt+dt,M)�H(Xt,M)

dSX (t) + dSbath(t) � I(Xt+dt;M)� I(Xt;M)

Due to the memory state, we need the term of mutual information.

Information thermodynamics

The entropy change of X:

The entropy change of the thermal bath:
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WE

2D Langevin equations

We consider the following 2D Langevin equations.

Stochastic thermodynamics for 2D 
Langevin equations

ẋ(t) = �@

x

UX (x(t), y(t)) +
p

2TX ⇠X (t)

ẏ(t) = �@yUY(x(t), y(t)) +
p

2TY⇠Y(t)

White Gaussian noise (mean 0, variance 1, independent): ξX, ξY.

pXt+dt|Xt,Yt
(xt+dt|xt, yt) = T X

yt
(xt+dt;xt)

Detailed fluctuation theorem 

p

Yt+dt|Xt,Yt
(y

t+dt

|x
t

, y

t

) = T Y
xt
(y

t+dt

; y
t

)

For the following two transition probabilities 

we have T Y
xt
(y

t+dt

; y
t

)

T Y
xt
(y

t

; y
t+dt

)

= exp


�jY(t)dt

TY

�T X
yt
(xt+dt;xt)

T X
yt
(xt;xt+dt)

= exp


�jX (t)dt

TX

�

jX (t) = ẋ(t) � (
p

2TX ⇠X (t)� ẋ(t))where jY(t) = ẏ(t) � (
p
2TY⇠Y(t)� ẏ(t))



Stochastic thermodynamics for 2D 
Langevin equations

2nd law of thermodynamics

We consider the following relative entropy.

We here use the detailed fluctuation theorem. 

The entropy change of X and Y :

The entropy change of the thermal bath:

We then obtain the 2nd law of thermodynamics

D(pXt+dt|Xt,Yt
pYt+dt|Xt,Yt

pXt,Yt ||pBXt|Xt+dt,Yt+dt
pBYt|Xt+dt,Yt+dt

pXt+dt,Yt+dt) � 0

D(pXt+dt|Xt,Yt
pYt+dt|Xt,Yt

pXt,Yt ||pBXt|Xt+dt,Yt+dt
pBYt|Xt+dt,Yt+dt

pXt+dt,Yt+dt)

= �hjX (t)idt
TX

� hjY(t)idt
TY

+H(Xt+dt, Yt+dt)�H(Xt, Yt)

dSX ,Y = H(Xt+dt, Yt+dt)�H(Xt, Yt)

dSbath,X = �hjX (t)idt
TX

dSbath,Y = �hjY(t)idt
TY

dSX ,Y + dSbath,X + dSbath,Y � 0



Stochastic thermodynamics for 2D 
Langevin equations

2nd law of information thermodynamics

We consider the following relative entropy.

We here use the detailed fluctuation theorem. 

The entropy change of X:

We then obtain the 2nd law of information thermodynamics

dSbath,X = �hjX (t)idt
TX

= �hjX (t)idt
TX

+H(Xt+dt)�H(Xt) + I(Xt; {Yt, Yt+dt})� I(Xt+dt; {Yt, Yt+dt})

The entropy change of the thermal bath by X:

dSX (t) = H(Xt+dt)�H(Xt)

dSX + dSbath,X � I(Xt+dt; {Yt, Yt+dt})� I(Xt; {Yt, Yt+dt}) = dI

D(pXt+dt|Xt,Yt
pXt,Yt,Yt+dt ||pBXt|Xt+dt,Yt+dt

pYt,Xt+dt,Yt+dt)

D(pXt+dt|Xt,Yt
pXt,Yt,Yt+dt ||pBXt|Xt+dt,Yt+dt

pYt,Xt+dt,Y) � 0



Stochastic thermodynamics for 2D 
Langevin equations

Comparison 

X Y

X YdIdSX

dSX ,Y

dSbath,X

dSbath,X dSbath,Y

�hjYidt

�hjYidt�hjX idt

�hjX idt

TX

TX

TY

TY

dSX ,Y + dSbath,X + dSbath,Y � 0

The 2nd law of thermo.

The 2nd law of info. thermo.

dSX + dSbath,X � dI
dSbath,Y



Summary
For Langevin equation, the 1st law is given by the chain rule, and the 2nd 
law is given by non-negativity of the relative entropy.

If there is a memory state, the 2nd law is modified because we have to 
consider the relative entropy with a memory state. 
The modified term is given by mutual information difference.

If we consider 2D Langevin equations, we have two choices of the relative 
entropy. One gives the 2nd law of thermodynamics, and another gives the 
2nd law of information thermodynamics. 

The 2nd law of information thermodynamics can be considered as the 2nd 
law for a subsystem.
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